skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Modulation of statolith mass and grouping in white clover (Trifolium repens) grown in 1-g, microgravity and on the clinostat

Smith , J.D. ; Todd , P. ; Staehelin , L.A.

Plant journal : for cell and molecular biology, 1997, Vol.12(6), pp.1361-1373 [Tạp chí có phản biện]

ISSN: 0960-7412

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Modulation of statolith mass and grouping in white clover (Trifolium repens) grown in 1-g, microgravity and on the clinostat
  • Tác giả: Smith , J.D. ; Todd , P. ; Staehelin , L.A.
  • Chủ đề: Roots ; Mathematical Models ; Trifolium Repens ; Space Flight ; Seedlings ; Starch ; Mass ; Spatial Distribution ; Ultrastructure ; Gravitropism ; Organelles ; Age ; Volume ; Gravity ; Feedback ; Root Caps
  • Là 1 phần của: Plant journal : for cell and molecular biology, 1997, Vol.12(6), pp.1361-1373
  • Mô tả: Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume. number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration. ; Includes references ; p. 1361-1373.
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 0960-7412

Đang tìm Cơ sở dữ liệu bên ngoài...