skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Simulation studies for the detection of changes in broadband albedo and shortwave nadir reflectance spectra under a climate change scenario

Feldman, Daniel R. ; Algieri, Chris A. ; Collins, William D. ; Roberts, Yolanda L. ; Pilewskie, Peter A.

Journal of Geophysical Research: Atmospheres, 27 December 2011, Vol.116(D24), pp.n/a-n/a [Tạp chí có phản biện]

ISSN: 0148-0227 ; E-ISSN: 2156-2202 ; DOI: 10.1029/2011JD016407

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Simulation studies for the detection of changes in broadband albedo and shortwave nadir reflectance spectra under a climate change scenario
  • Tác giả: Feldman, Daniel R. ; Algieri, Chris A. ; Collins, William D. ; Roberts, Yolanda L. ; Pilewskie, Peter A.
  • Chủ đề: Albedo ; Change Detection ; Hyperspectral Reflectance
  • Là 1 phần của: Journal of Geophysical Research: Atmospheres, 27 December 2011, Vol.116(D24), pp.n/a-n/a
  • Mô tả: Climate forcing by greenhouse gases and aerosols and climate feedbacks from snow, sea‐ice, and clouds all significantly impact the future evolution of the climate system's shortwave energy budget. We examine prospects for tracking changes in these forcings and feedbacks using top‐of‐atmosphere measurements of shortwave reflected radiation. We quantify the extent to which spectral measurements may reduce the time required to detect changes in the climate the climate system with high statistical confidence relative to conventional broadband measurements. We have developed an Observing System Simulation Experiment (OSSE) based on the Community Climate System Model 3.0 for the NASA CLARREO mission and have analyzed forced and unforced simulations of the 21st Century from the Intergovernmental Panel on Climate Change assessments. We find that changes in the simulated nadir spectral reflectance measurements in the visible window and between near‐infrared water‐vapor overtone channels under clear‐sky conditions are detectible faster than the corresponding changes in broadband albedo, with many trends detectible within a five‐year satellite mission lifetime. Under all‐sky conditions, the superposition of unforced cloud variability on the secular climate trends lengthens the times required for climate‐change detection in both the spectral and broadband data. However, migration of the ITCZ and stratus regions can be detected after 16–18 years of observation while broadband albedo measurements require 33–61 years of observation. We find that measurement uncertainty and instrument drift significantly lengthen detection times for broadband albedo and spectral reflectances in window channels but do not have the same effect for spectral measurements in water vapor bands. Change detection with a time series of albedo measurements is spatially variable Hyperspectral reflectance spectra detect change faster than albedo measurements Measurement error lengthens the time required to detect climate change
  • Số nhận dạng: ISSN: 0148-0227 ; E-ISSN: 2156-2202 ; DOI: 10.1029/2011JD016407

Đang tìm Cơ sở dữ liệu bên ngoài...