skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Neural Networks and SVM-Based Classification of Leukocytes Using the Morphological Pattern Spectrum

Ramirez-Cortes, Juan Manuel ; Gomez-Gil, Pilar ; Alarcon-Aquino, Vicente ; Gonzalez-Bernal, Jesus ; Garcia-Pedrero, Angel; Melin, Patricia (Editor) ; Kacprzyk, Janusz (Editor) ; Pedrycz, Witold (Editor)

Studies in Computational Intelligence, Soft Computing for Recognition Based on Biometrics, pp.19-35

ISBN: 9783642151101 ; ISBN: 3642151108 ; E-ISBN: 9783642151118 ; E-ISBN: 3642151116 ; DOI: 10.1007/978-3-642-15111-8_2

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Neural Networks and SVM-Based Classification of Leukocytes Using the Morphological Pattern Spectrum
  • Tác giả: Ramirez-Cortes, Juan Manuel ; Gomez-Gil, Pilar ; Alarcon-Aquino, Vicente ; Gonzalez-Bernal, Jesus ; Garcia-Pedrero, Angel
  • Melin, Patricia (Editor) ; Kacprzyk, Janusz (Editor) ; Pedrycz, Witold (Editor)
  • Chủ đề: Engineering ; Engineering Design ; Artificial Intelligence (Incl. Robotics) ; Biometrics ; Engineering
  • Là 1 phần của: Studies in Computational Intelligence, Soft Computing for Recognition Based on Biometrics, pp.19-35
  • Mô tả: In this paper we present the morphological operator pecstrum, or pattern spectrum, as a feature extractor of discriminating characteristics in microscopic leukocytes images for classification purposes. Pecstrum provides an excellent quantitative analysis to model the morphological evolution of nuclei in blood white cells, or leukocytes. According to their maturity stage, leukocytes have been classified by medical experts in six categories, from myeloblast to polymorphonuclear corresponding to the youngest and oldest extremes, respectively. A feature vector based on the pattern spectrum, normalized area, and nucleus - cytoplasm area ratio, was tested using a multilayer perceptron neural network trained by backpropagation, and a Support Vector Machine algorithm. Results from Euclidean distance and k-nearest neighbor classifiers are also reported as reference for comparison purposes. A recognition rate of 87% was obtained in the best case, using 36 patterns for training and 18 for testing, with a three-fold validation scheme. Additional experiments exploring larger databases are currently in progress.
  • Nơi xuất bản: Berlin, Heidelberg: Springer Berlin Heidelberg
  • Năm xuất bản: 2010
  • Ngôn ngữ: English
  • Số nhận dạng: ISBN: 9783642151101 ; ISBN: 3642151108 ; E-ISBN: 9783642151118 ; E-ISBN: 3642151116 ; DOI: 10.1007/978-3-642-15111-8_2

Đang tìm Cơ sở dữ liệu bên ngoài...