skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Comparative Study of Feature Extraction Methods of Fuzzy Logic Type 1 and Type-2 for Pattern Recognition System Based on the Mean Pixels

Lopez, Miguel ; Melin, Patricia ; Castillo, Oscar; Melin, Patricia (Editor) ; Kacprzyk, Janusz (Editor) ; Pedrycz, Witold (Editor)

Studies in Computational Intelligence, Soft Computing for Recognition Based on Biometrics, pp.171-188

ISBN: 9783642151101 ; ISBN: 3642151108 ; E-ISBN: 9783642151118 ; E-ISBN: 3642151116 ; DOI: 10.1007/978-3-642-15111-8_11

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Comparative Study of Feature Extraction Methods of Fuzzy Logic Type 1 and Type-2 for Pattern Recognition System Based on the Mean Pixels
  • Tác giả: Lopez, Miguel ; Melin, Patricia ; Castillo, Oscar
  • Melin, Patricia (Editor) ; Kacprzyk, Janusz (Editor) ; Pedrycz, Witold (Editor)
  • Chủ đề: Engineering ; Engineering Design ; Artificial Intelligence (Incl. Robotics) ; Biometrics ; Engineering
  • Là 1 phần của: Studies in Computational Intelligence, Soft Computing for Recognition Based on Biometrics, pp.171-188
  • Mô tả: We describe in this paper a new approach for features extraction methods with Type-1 and Type-2 for Pattern Recognition System based on the pixels mean. In this paper we consider pattern recognition with extraction features fuzzy logic for ensemble neural networks for the case of fingerprintsn and using response integration fuzzy logic method to the test proposed method of fuzzy extraction method. An ensemble neural network of three modules is used. Each module is a local expert on person recognition based on their biometric measure (Pattern recognition for fingerprints). The fuzzy extraction features method is based on the pixels mean of the fingerprint.
  • Nơi xuất bản: Berlin, Heidelberg: Springer Berlin Heidelberg
  • Năm xuất bản: 2010
  • Ngôn ngữ: English
  • Số nhận dạng: ISBN: 9783642151101 ; ISBN: 3642151108 ; E-ISBN: 9783642151118 ; E-ISBN: 3642151116 ; DOI: 10.1007/978-3-642-15111-8_11

Đang tìm Cơ sở dữ liệu bên ngoài...