skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

From humans to humanoids: The optimal control framework

Ivaldi, Serena ; Sigaud, Olivier ; Berret, Bastien ; Nori, Francesco

Paladyn, 2012, Vol.3(2), pp.75-91 [Tạp chí có phản biện]

ISSN: 2080-9778 ; E-ISSN: 2081-4836 ; DOI: 10.2478/s13230-012-0022-3

Toàn văn sẵn có

Phiên bản sẵn có
Trích dẫn Trích dẫn bởi
  • Nhan đề:
    From humans to humanoids: The optimal control framework
  • Tác giả: Ivaldi, Serena ; Sigaud, Olivier ; Berret, Bastien ; Nori, Francesco
  • Chủ đề: humanoids ; human motor control ; optimality ; stochastic optimal control
  • Là 1 phần của: Paladyn, 2012, Vol.3(2), pp.75-91
  • Mô tả: In the last years of research in cognitive control, neuroscience and humanoid robotics have converged to different frameworks which aim, on one side, at modeling and analyzing human motion, and, on the other side, at enhancing motor abilities of humanoids. In this paper we try to cover the gap between the two areas, giving an overview of the literature in the two fields which concerns the production of movements. First, we survey computational motor control models based on optimality principles; then, we review available implementations and techniques to transfer these principles to humanoid robots, with a focus on the limitations and possible improvements of the current implementations. Moreover, we propose Stochastic Optimal Control as a framework to take into account delays and noise, thus catching the unpredictability aspects typical of both humans and humanoids systems. Optimal Control in general can also easily be integrated with Machine Learning frameworks, thus resulting in a computational implementation of human motor learning. This survey is mainly addressed to roboticists attempting to implement human-inspired controllers on robots, but can also be of interest for researchers in other fields, such as computational motor control.
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 2080-9778 ; E-ISSN: 2081-4836 ; DOI: 10.2478/s13230-012-0022-3

Đang tìm Cơ sở dữ liệu bên ngoài...