skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Learning multimodal behavioral models for face-to-face social interaction

Mihoub, Alaeddine ; Bailly, Gérard ; Wolf, Christian ; Elisei, Frédéric

Journal on Multimodal User Interfaces, 2015, Vol.9(3), pp.195-210 [Tạp chí có phản biện]

ISSN: 1783-7677 ; E-ISSN: 1783-8738 ; DOI: 10.1007/s12193-015-0190-7

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Learning multimodal behavioral models for face-to-face social interaction
  • Tác giả: Mihoub, Alaeddine ; Bailly, Gérard ; Wolf, Christian ; Elisei, Frédéric
  • Chủ đề: Sensory-motor behavior ; Interaction unit recognition ; Gaze prediction ; Hidden Semi-Markov Model
  • Là 1 phần của: Journal on Multimodal User Interfaces, 2015, Vol.9(3), pp.195-210
  • Mô tả: The aim of this paper is to model multimodal perception-action loops of human behavior in face-to-face interactions. To this end, we propose trainable behavioral models that predict the optimal actions for one specific person given others’ perceived actions and the joint goals of the interlocutors. We first compare sequential models—in particular discrete hidden Markov models (DHMMs)—with standard classifiers (SVMs and decision trees). We propose a modification of the initialization of the DHMMs in order to better capture the recurrent structure of the sensory-motor states. We show that the explicit state duration modeling by discrete hidden semi markov models (DHSMMs) improves prediction performance. We applied these models to parallel speech and gaze data collected from interacting dyads. The challenge was to predict the gaze of one subject given the gaze of the interlocutor and the voice activity of both. For both DHMMs and DHSMMs the short-time Viterbi concept is used for incremental decoding and prediction. For the proposed models we evaluated objectively several properties in order to go beyond pure classification performance. Results show that incremental DHMMs (IDHMMs) were more efficient than classic classifiers and superseded by incremental DHSMMs (IDHSMMs). This later result emphasizes the relevance of state duration modeling.
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 1783-7677 ; E-ISSN: 1783-8738 ; DOI: 10.1007/s12193-015-0190-7

Đang tìm Cơ sở dữ liệu bên ngoài...