skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: atomistic mechanisms near a Kurdjumov–Sachs interface

Choudhuri, D. ; Banerjee, R. ; Srinivasan, S.

Journal of Materials Science, 2018, Vol.53(8), pp.5684-5695 [Tạp chí có phản biện]

ISSN: 0022-2461 ; E-ISSN: 1573-4803 ; DOI: 10.1007/s10853-017-1937-1

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: atomistic mechanisms near a Kurdjumov–Sachs interface
  • Tác giả: Choudhuri, D. ; Banerjee, R. ; Srinivasan, S.
  • Chủ đề: Materials Science ; Materials Science, General ; Characterization and Evaluation of Materials ; Polymer Sciences ; Continuum Mechanics and Mechanics of Materials ; Crystallography and Scattering Methods ; Classical Mechanics ; Engineering
  • Là 1 phần của: Journal of Materials Science, 2018, Vol.53(8), pp.5684-5695
  • Mô tả: Creating tailored interfaces between soft and hard materials is a promising route to simultaneously enhance ductility and strength of multicomponent materials. Here, we study deformation mechanisms in a model bicrystal, with a Kurdjumov–Sachs (KS) interface, between face-centered-cubic Ni and ordered-B2 NiAl slabs using molecular dynamics simulations. The bicrystals were uniaxially deformed by strain rates of 0^7 10 7 and 0^9\,\hbox {s}^{-1} 10 9 s - 1 by holding temperatures constant at 300, 500, 700, and 900 K for each strain rate. Our simulations reveal atomistic processes that create sessile and glissile dislocations, and their reactions during high-strain rate deformation. At 0^9\,\hbox {s}^{-1} 10 9 s - 1 strain rates, dislocation processes enhance ductility and cause large-scale atomic rearrangements in the KS interfacial region. This subsequently causes nucleation, growth, and coalescence of nano-voids into cracks inside the harder B2-ordered phase bordering the interface. Our results suggest that interfaces between “soft”–“hard” materials likely withstand high-strain rates better.
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 0022-2461 ; E-ISSN: 1573-4803 ; DOI: 10.1007/s10853-017-1937-1

Đang tìm Cơ sở dữ liệu bên ngoài...