skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China

Deng, Mingjun ; Kuo, Dave T.F. ; Wu, Qihang ; Zhang, Ying ; Liu, Xinyu ; Liu, Shengyu ; Hu, Xiaodong ; Mai, Bixian ; Liu, Zhineng ; Zhang, Haozhi

Environmental Pollution, May 2018, Vol.236, pp.137-145 [Tạp chí có phản biện]

ISSN: 0269-7491 ; DOI: 10.1016/j.envpol.2018.01.042

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China
  • Tác giả: Deng, Mingjun ; Kuo, Dave T.F. ; Wu, Qihang ; Zhang, Ying ; Liu, Xinyu ; Liu, Shengyu ; Hu, Xiaodong ; Mai, Bixian ; Liu, Zhineng ; Zhang, Haozhi
  • Chủ đề: Organophosphorus Flame Retardants ; Heavy Metals ; Leachate ; Microfiltration ; Removal
  • Là 1 phần của: Environmental Pollution, May 2018, Vol.236, pp.137-145
  • Mô tả: The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L−1 to 103.91 ng L−1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L−1, respectively. Thirteen regulated heavy metals – including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) – have been detected in all wastewater samples at sub-mg L−1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills. Image 1 •Microfiltration/reverse osmosis is indispensable for removing OPFRs and heavy metals.•Biological treatment only serves a secondary role.•Remobilization of heavy metals may occur during biological treatment.•Basic wastewater treatment processes have limitation in removing these contaminants.
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 0269-7491 ; DOI: 10.1016/j.envpol.2018.01.042

Đang tìm Cơ sở dữ liệu bên ngoài...