skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

On an elliptic system with symmetric potential possessing two global minima

Alikakos, Nicholas ; Fusco, Giorgio; Fusco, Giorgio (pacrepositoryorg)

arXiv.org, Oct 28, 2010

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    On an elliptic system with symmetric potential possessing two global minima
  • Tác giả: Alikakos, Nicholas ; Fusco, Giorgio
  • Fusco, Giorgio (pacrepositoryorg)
  • Chủ đề: Graphical User Interface ; Symmetry
  • Là 1 phần của: arXiv.org, Oct 28, 2010
  • Mô tả: We consider the system {\Delta}u - W_u (u) = 0, for u: R^2 -> R^2, W: R^2 -> R, where W_u (u) is a smooth potential, symmetric with respect to the u_1, u_2 axes, possessing two global minima a^\pm := (\pma,0) and two connections e^\pm(x_1) connecting the minima. We prove that there exists an equivariant solution u(x_1, x_2) satisfying u(x_1, x_2) -> a^\pm, as x_1 -> \pminfiniti, and u(x_1, x_2) -> e^\pm(x_1), as x_2 -> \pminfiniti. The problem above was first studied by Alama, Bronsard, and Gui under related hypotheses to the ones introduced in the present paper. At the expense of one extra symmetry assumption, we avoid their considerations with the normalized energy and strengthen their result. We also provide examples for W.
  • Ngôn ngữ: English

Đang tìm Cơ sở dữ liệu bên ngoài...