skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Nonlinear waves in networks: a simple approach using the sine--Gordon equation

Caputo, Jean-Guy ; Dutykh, Denys; Dutykh, Denys (pacrepositoryorg)

arXiv.org, Feb 26, 2014 [Tạp chí có phản biện]

DOI: 10.1103/PhysRevE.90.022912

Toàn văn sẵn có

Phiên bản sẵn có
Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Nonlinear waves in networks: a simple approach using the sine--Gordon equation
  • Tác giả: Caputo, Jean-Guy ; Dutykh, Denys
  • Dutykh, Denys (pacrepositoryorg)
  • Chủ đề: Wave Propagation ; Dynamic Tests ; Breathers ; Two Dimensional Models ; Computer Simulation
  • Là 1 phần của: arXiv.org, Feb 26, 2014
  • Mô tả: To study the propagation of nonlinear waves across Y-- and T--type junctions, we consider the 2D sine--Gordon equation as a model and study the dynamics of kinks and breathers in such geometries. The comparison of the energies reveals that the angle of the fork plays no role. Motivated by this, we introduce a 1D effective equation whose solutions agree well with the 2D simulations for kink and breather solutions. For branches of equal width, breather crossing occurs approximately when \(v > 1 - \omega\), where \(v\) is the breather celerity and \(\omega\) is its frequency. We then characterize the breathers in the two upper branches by estimating their velocity and frequency. These new breathers are slower than the initial breather and up-shifted in frequency. In perspective, this study could be generalized to more complex nonlinear waves.
  • Ngôn ngữ: English
  • Số nhận dạng: DOI: 10.1103/PhysRevE.90.022912

Đang tìm Cơ sở dữ liệu bên ngoài...