skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

An intelligent approach to supplier evaluation in automotive sector

Aya, Zeki ; Samanlioglu, Funda

Journal of Intelligent Manufacturing, Aug 2016, Vol.27(4), pp.889-903 [Tạp chí có phản biện]

ISSN: 09565515 ; E-ISSN: 15728145 ; DOI: 10.1007/s10845-014-0922-7

Truy cập trực tuyến

Phiên bản sẵn có
Trích dẫn Trích dẫn bởi
  • Nhan đề:
    An intelligent approach to supplier evaluation in automotive sector
  • Tác giả: Aya, Zeki ; Samanlioglu, Funda
  • Chủ đề: Suppliers ; Manufacturers ; Fuzzy Logic ; Automobile Industry ; Multiple Criteria Decision Making ; Transportation Equipment Industry ; Management Science/Operations Research ; Experimental/Theoretical ; Supplier Selection ; Fuzzy Logic ; Multiple-Criteria Decision Making ; Analytic Network Process
  • Là 1 phần của: Journal of Intelligent Manufacturing, Aug 2016, Vol.27(4), pp.889-903
  • Mô tả: During the process of supplier evaluation, selecting the best desirable supplier is one of the most critical problems of companies since improperly selected suppliers may cause losing time, cost and market share of a company. For this multiple-criteria decision making selection problem, in this paper, a fuzzy extension of analytic network process (ANP), which uses uncertain human preferences as input information in the decision-making process, is applied since conventional methods such as analytic hierarchy process cannot accommodate the variety of interactions, dependencies and feedback between higher and lower level elements. The resulting fuzzy ANP enhances the potential of the conventional ANP for dealing with imprecise and uncertain human comparison judgments. In short, in this paper, an intelligent approach to supplier selection problem through fuzzy ANP is proposed by taking into consideration quantitative and qualitative elements to evaluate supplier alternatives, and a case study...
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 09565515 ; E-ISSN: 15728145 ; DOI: 10.1007/s10845-014-0922-7

Đang tìm Cơ sở dữ liệu bên ngoài...