skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Web Search Queries Can Predict Stock Market Volumes (Search Queries Can Predict Stock Market Volumes)

Bordino, Ilaria ; Battiston, Stefano ; Caldarelli, Guido ; Cristelli, Matthieu ; Ukkonen, Antti ; Weber, Ingmar; Montoya, Alejandro Raul Hernandez (Editor)

PLoS ONE, 2012, Vol.7(7), p.e40014 [Tạp chí có phản biện]

E-ISSN: 1932-6203 ; DOI: 10.1371/journal.pone.0040014

Toàn văn sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Web Search Queries Can Predict Stock Market Volumes (Search Queries Can Predict Stock Market Volumes)
  • Tác giả: Bordino, Ilaria ; Battiston, Stefano ; Caldarelli, Guido ; Cristelli, Matthieu ; Ukkonen, Antti ; Weber, Ingmar
  • Montoya, Alejandro Raul Hernandez (Editor)
  • Chủ đề: Research Article ; Computer Science ; Mathematics ; Physics ; Computer Science ; Physics ; Mathematics
  • Là 1 phần của: PLoS ONE, 2012, Vol.7(7), p.e40014
  • Mô tả: We live in a computerized and networked society where many of our actions leave a digital trace and affect other people’s actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.
  • Ngôn ngữ: English
  • Số nhận dạng: E-ISSN: 1932-6203 ; DOI: 10.1371/journal.pone.0040014

Đang tìm Cơ sở dữ liệu bên ngoài...