skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Learning Future Classifiers without Additional Data

熊谷, 充敏 ; 岩田, 具治 ; Kumagai, Atsutoshi ; Iwata, Tomoharu

人工知能学会論文誌, 2018, Vol.33(2), pp.D-H92_1-9

ISSN: 1346-0714 ; DOI: 10.1527/tjsai.D-H92

Toàn văn sẵn có

Phiên bản sẵn có
Trích dẫn Trích dẫn bởi
  • Learning Future Classifiers without Additional Data

  • Nhan đề:
  • Tác giả: 熊谷, 充敏 ; 岩田, 具治 ; Kumagai, Atsutoshi ; Iwata, Tomoharu
  • Chủ đề: machine learning ; classification ; concept drift ; time-series ; Machine Learning ; Classification ; Concept Drift ; Time-Series
  • Là 1 phần của: 人工知能学会論文誌, 2018, Vol.33(2), pp.D-H92_1-9
  • Mô tả:

    We propose probabilistic models for predicting future classifiers given labeled data with timestamps collected until the current time. In some applications, the decision boundary changes over time. For example, in activity recognition using sensor data, the decision boundary can vary since user activity patterns dynamically change. Existing methods require additional labeled and/or unlabeled data to learn a time-evolving decision boundary. However, collecting these data can be expensive or impossible. By incorporating time-series models to capture the dynamics of a decision boundary, the proposed model can predict future classifiers without additional data. We developed two learning algorithms for the proposed model on the basis of variational Bayesian inference. The effectiveness of the proposed method is demonstrated with experiments using synthetic and real-world data sets.

  • Ngôn ngữ: Japanese
  • Số nhận dạng: ISSN: 1346-0714 ; DOI: 10.1527/tjsai.D-H92

Đang tìm Cơ sở dữ liệu bên ngoài...