skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Numerical solution of the Benjamin equation

Dougalis, V. A. ; Duran, A. ; Mitsotakis, D.

Wave Motion, Jan, 2015, Vol.52, p.194(22) [Tạp chí có phản biện]

ISSN: 0165-2125

Truy cập trực tuyến

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Numerical solution of the Benjamin equation
  • Tác giả: Dougalis, V. A. ; Duran, A. ; Mitsotakis, D.
  • Chủ đề: Internal Waves
  • Là 1 phần của: Wave Motion, Jan, 2015, Vol.52, p.194(22)
  • Mô tả: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.wavemoti.2014.10.004 Byline: V.A. Dougalis, A. Duran, D. Mitsotakis Abstract: In this paper we consider the Benjamin equation, a partial differential equation that models one-way propagation of long internal waves of small amplitude along the interface of two fluid layers under the effects of gravity and surface tension. We solve the periodic initial-value problem for the Benjamin equation numerically by a new fully discrete hybrid finite-element/spectral scheme, which we first validate by pinning down its accuracy and stability properties. After testing the evolution properties of the scheme in a study of propagation of single- and multi-pulse solitary waves of the Benjamin equation, we use it in an exploratory mode to illuminate phenomena such as overtaking collisions of solitary waves, and the stability of single-pulse, multi-pulse and 'depression' solitary waves. Article History: Received 28 May 2014; Revised 1 September 2014; Accepted 28 October 2014
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 0165-2125

Đang tìm Cơ sở dữ liệu bên ngoài...