skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Numerical solution of the Benjamin equation

Dougalis, V.A ; Duran, A ; Mitsotakis, D

Wave Motion, January 2015, Vol.52, pp.194-215 [Tạp chí có phản biện]

ISSN: 0165-2125 ; E-ISSN: 1878-433X ; DOI: 10.1016/j.wavemoti.2014.10.004

Truy cập trực tuyến

Phiên bản sẵn có
Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Numerical solution of the Benjamin equation
  • Tác giả: Dougalis, V.A ; Duran, A ; Mitsotakis, D
  • Chủ đề: Benjamin Equation ; Solitary Waves ; Hybrid Finite Element-Spectral Method ; Benjamin Equation ; Solitary Waves ; Hybrid Finite Element-Spectral Method ; Applied Sciences ; Physics
  • Là 1 phần của: Wave Motion, January 2015, Vol.52, pp.194-215
  • Mô tả: In this paper we consider the Benjamin equation, a partial differential equation that models one-way propagation of long internal waves of small amplitude along the interface of two fluid layers under the effects of gravity and surface tension. We solve the periodic initial-value problem for the Benjamin equation numerically by a new fully discrete hybrid finite-element/spectral scheme, which we first validate by pinning down its accuracy and stability properties. After testing the evolution properties of the scheme in a study of propagation of single- and multi-pulse solitary waves of the Benjamin equation, we use it in an exploratory mode to illuminate phenomena such as overtaking collisions of solitary waves, and the stability of single-pulse, multi-pulse and ‘depression’ solitary waves. •A novel hybrid scheme for the Benjamin equation is constructed.•Accuracy and stability properties are shown.•Evolution properties are validated with solitary wave simulations.•Collisions...
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 0165-2125 ; E-ISSN: 1878-433X ; DOI: 10.1016/j.wavemoti.2014.10.004

Đang tìm Cơ sở dữ liệu bên ngoài...