skip to main content
Ngôn ngữ:
Giới hạn tìm kiếm: Giới hạn tìm kiếm: Dạng tài nguyên Hiển thị kết quả với: Hiển thị kết quả với: Chỉ mục

Introducing libeemd: a program package for performing the ensemble empirical mode decomposition

Luukko, P. J. J. ; Helske, Jouni ; Rasanen, E.

Computational statistics (Zeitschrift), 2016, Vol. 31(2), pp. 545-557 [Tạp chí có phản biện]

ISSN: 0943-4062 ; DOI: 10.1007/s00180-015-0603-9

Toàn văn không sẵn có

Trích dẫn Trích dẫn bởi
  • Nhan đề:
    Introducing libeemd: a program package for performing the ensemble empirical mode decomposition
  • Tác giả: Luukko, P. J. J. ; Helske, Jouni ; Rasanen, E.
  • Chủ đề: Hilbert-Huang Transform; Intrinsic Mode Function; Time Series Analysis; Adaptive Data Analysis; Noise-Assisted Data Analysis; Detrending ; Natural Sciences ; Mathematics ; Probability Theory And Statistics ; Naturvetenskap ; Matematik ; Sannolikhetsteori Och Statistik
  • Là 1 phần của: Computational statistics (Zeitschrift), 2016, Vol. 31(2), pp. 545-557
  • Mô tả: The ensemble empirical mode decomposition (EEMD) and its complete variant (CEEMDAN) are adaptive, noise-assisted data analysis methods that improve on the ordinary empirical mode decomposition (EMD). All these methods decompose possibly nonlinear and/or nonstationary time series data into a finite amount of components separated by instantaneous frequencies. This decomposition provides a powerful method to look into the different processes behind a given time series data, and provides a way to separate short time-scale events from a general trend. We present a free software implementation of EMD, EEMD and CEEMDAN and give an overview of the EMD methodology and the algorithms used in the decomposition. We release our implementation, libeemd, with the aim of providing a user-friendly, fast, stable, well-documented and easily extensible EEMD library for anyone interested in using (E)EMD in the analysis of time series data. While written in C for numerical efficiency, our implementation includes interfaces to the Python and R languages, and interfaces to other languages are straightforward.
  • Ngôn ngữ: English
  • Số nhận dạng: ISSN: 0943-4062 ; DOI: 10.1007/s00180-015-0603-9

Đang tìm Cơ sở dữ liệu bên ngoài...